

CONDUCTIVE POLYMER ALUMINUM SOLID CAPACITORS

PRODUCT SPECIFICATION

規格書

CUSTOMER: DATE:

(客戶): 志盛翔 (日期): 2020-07-27

CATEGORY (品名) : CONDUCTIVE POLYMER ALUMINUM

SOLID CAPACITORS

DESCRIPTION (型号) : UER 35V470μF (φ10x12.5)

VERSION (版本) : 01

Customer P/N : /

SUPPLIER :

SUPPLIER			
PREPARED (拟定)	CHECKED (审核)		
邓文文	付婷婷		

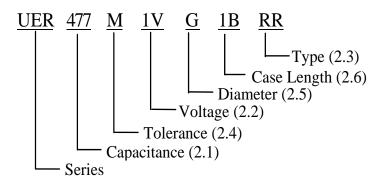
CUSTOMER		
APPROVAL	SIGNATURE	
(批准)	(签名)	

SPECIFICATION			ALTERNA R	ATION HIST ECORDS	ΓORY		
Rev.	Date	UER SERII Mark	ES Page	Contents	Purpose	Drafter	Approver
IXEV.	Date	Mark	1 age	Contents	1 urpose	חמוניו	Approver

Version 01	Page	1
------------	------	---

CONTENTS

Sheet	
SHEEL	
1. Application 3	
2. Part Number System 3	
3. Construction 4	
4. Characteristics 5~11	l
4.1 Rated voltage & Surge voltage 6~9	
4.2 Capacitance (Tolerance)	
4.3 Leakage current	
4.4 Tangent of loss angle	
4.5 ESR	
4.6 Temperature characteristic	
4.7 Load life test	
4.8 Surge test	
4.9 Damp heat test	
4.10 Maximum permissible ripple current4.11 Rapid change of temperature	
4.11 Kapid Change of temperature 4.12 Lead strength	
4.13 Resistance to vibration	
4.14 Solderability	
4.15 Resistance to soldering heat	
5. Product Marking 10	
6. Product Dimensions, Impedance & Maximum Permissible Ripple Current 11	
7. Application Guideline	
8. Mounting Precautions 13	
8-1 Circuit design	
8-2 Voltage	
8-3 Sudden charge and discharge restricted	
8-4 Ripple current	
8-5 Leakage current	
8-6 Failure rate	
8-7 Capacitor insulation	
8-8 Precautions for using capacitors	
9.It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-QA-072).	


Version	01		Page	2	
---------	----	--	------	---	--

1. Application

This specification applies to conductive polymer aluminum solid capacitors used in electronic equipment.

2. Part Number System

2.1 <u>Capacitance code</u>

Code	477
Capacitance (µ F)	470

2.2 <u>Rated voltage code</u>

Code	1V
Voltage (W.V.)	35

2.3 <u>Type</u>

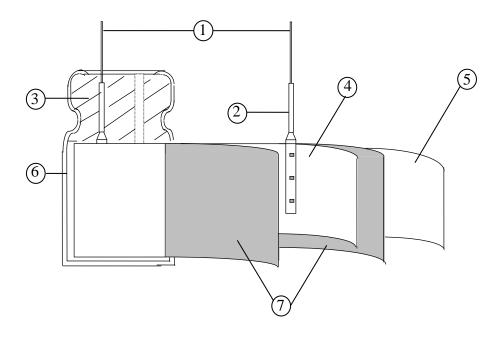
Code	RR
Type	Bulk

2.4 <u>Capacitance tolerance</u>

"M" stands for $-20\% \sim +20\%$

2.5 <u>Diameter</u>

J 1011110 101	
Code	G
Diameter	10


2.6 <u>Case length</u>

1B=12.5mm

3. Construction

Single ended type to be produced to fix the terminals to anode and cathode foil, and wind together with paper, and then wound element to be formed and carbonized, impregnated with polymer and polymerized, then will be enclosed in an aluminum case. Finally sealed up tightly with end seal rubber.

No	Component	Material
1	Lead Line	Tinned Copper Line or CP Line(Pb Free)
2	Terminal	Aluminum
3	Sealing Material	Rubber
4	Al-Foil (+)	Aluminum
5	Al-Foil (-)	Aluminum
6	Case	Aluminum
7	Electrolyte paper	Manila Hemp

Version	01		Page	4	
---------	----	--	------	---	--

4. Characteristics

Standard atmospheric conditions

Unless otherwise specified, the standard range of atmospheric conditions for making measurements and tests is as follows:

Ambient temperature : 15°C to 35°C Relative humidity : 45% to 75% Air Pressure : 86kPa to 106kPa

If there is any doubt about the results, measurement shall be made within the following conditions:

Ambient temperature : $20^{\circ}\text{C} \pm 2^{\circ}\text{C}$ Relative humidity : 60% to 70%Air Pressure : 86kPa to 106kPa

Operating temperature range

The ambient temperature range at which the capacitor can be operated continuously at rated voltage is -55°C to 105°C.

Version	01		Page	5
---------	----	--	------	---

	ITEM PERFORMANCE						
				P	ERFORMANCE		
4.1	Rated voltage (WV) Surge voltage (SV)	_	VV (V.DC)	35 40			
4.2	Nominal capacitance (Tolerance)	Measur Measur < Crite	ring Frequence ing Voltage ring Tempera	: Not ature : 20±	Hz±12Hz more than 0.5Vrms 2°C pacitance tolerance.		
4.3	Leakage current	Condi After D $\Omega \pm 10$ when n In case voltage	tion> OC Voltage is OΩ) so that te neasured after leakage curr	applied to rminal volta 2 minutes s rent value e at applies th	capacitors through that the rate of the ra	e series protective resistor (1k d voltage .The leakage current lues of the following equation. n in Table 3, remeasure after in 4.1 for 120minutes at 105°C	
4.4	tanδ	<pre><condition> See 4.2, for measuring frequency, voltage and temperature. </condition></pre> <pre><criteria></criteria></pre> <pre>Working voltage (v) 35</pre> <pre>tanδ (max.) 0.10</pre>					
4.5	ESR	Condition> Measuring frequency: 100kHz to 300kHz; Measuring temperature:20±2°C Measuring point: 1mm max from the surface of a sealing resin on the lead wire. Criteria> (20°C)Less than the initial limit(See Table 3).					
		STEP	Tempera		Item	Characteristics	
		1	20 ±		Measure: Capacitance tano Impedance		
		2	-55	+3	Z-55°C / 20°C	≤1.25	
		3	Keep at 15 to 15 minutes				
4.6	Temperature	4	105		Z105°C / 20°C	≤1.25	
	characteristic				Δ C/C 20°C	Within $\pm 5\%$ of step1	
		5	20=	<u></u>	tanδ	Less than or equal to the value of item 4.4	
		<condition< td=""><td></td><td></td><td></td><td></td></condition<>					
		a. Z -5	5°C or 105°C /	Z 20°C: imp	edance ratio at 100kH	z;	
		b. Δ C/	C 20°C: Capa	citance cha	nge at 120Hz;		
		c. tanδ	at 120Hz.				

Version	01		Page	6	
---------	----	--	------	---	--

Version

01

7

Page

			at a temperature of 105 ± 2 °C with rated hours. The result should meet the following table:
		Item	Performance
		Capacitance Change	Within ±20% of initial capacitance
4.7	Load life	tanδ	Less than or equal to 1.5 times of the value of item 4.4
	test	ESR	Less than or equal to 1.5 times of the value of item 4.5
		Leakage current	Less than or equal to the value of item 4.3
		Appearance	Notable changes shall not be found.
		±5 seconds in every 5mi	ed the surge voltage through $1k\Omega$ resistor in series for 30 inutes 30s at 15~35°C. Procedure shall be repeated 1000 rs shall be left under normal humidity for 1-2hours before
4.8	Surge	Item	Performance
	test	Capacitance Change	Within $\pm 20\%$ of initial capacitance
		tanδ	Less than or equal to 1.5 times of the value of item 4.4
		ESR	Less than or equal to 1.5 times of the value of item 4.5
		Leakage current	Less than or equal to the value of item 4.3
			mulates over voltage at abnormal situation, and not be voltage is always applied.
		-	exposed for 1000 ± 48 hours in an atmosphere of C, the characteristic change shall meet the following
	Damp	Item	Performance
4.9	heat test	Capacitance Change	Within $\pm 20\%$ of initial capacitance
		tanδ	Less than or equal to 1.5 times of the value of item 4.4
		ESR	Less than or equal to 1.5 times of the value of item 4.5
		Leakage current	Less than or equal to the value of item 4.3
		Appearance	Notable changes shall not be found.

4.10	Maximum permissible (ripple current)	<condition> The maximum per At 100kHz and ca Table 3 The combined val rated voltage and Frequency Multip Frequency Coefficient</condition>	n be applied a ue of D.C volt shall not rever	maximum openage and the peal	rating temperatur	re see
4.11	Rapid change of temperature	Performance: The of Item Capacitance chan tanδ Leakage current	capacitors shal Performa ge Within ± Less than	meet the following ince 10% of initial or equal to the	Root 30±3 min in or less cle wing specification capacitance	
4.12	Lead strength	a) Lead pull strength A static load force in a direction away Lead wire 0.5 < c b) Lead bending When the capacitor table above is applic horizontal position a 2~3seconds. The additional bend Lead wire c 0.5 < c Performance: The c Item Leakage current Outward Appearar	y for 10±1 s. yertical position and then the caped to a vertical posite directly the opposite directly all meet the folformance as than or equal	Load force (N) 10 and the weight specifier is slowly a position thus compection and force (N) 5	specified in the rotated 90° to a pleting bends for er a) or b) test.	

Version 01		Page	8
------------	--	------	---

4.14 Solo Re to s	esistance to vibration	Direction: X、Y、Z(3 axes) Duration: 2hours/ axial (Total 6 hours) The capacitors are supported as the following Fig2 Performance: Capacitance value shall not show drastic change compared to capacitance when the value is measured within 30 minutes. Prior to the confexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall with new solder.	mpletion of I value the
4.14 Solo Re to s	vibration	The capacitors are supported as the following Fig2 Performance: Capacitance value shall not show drastic change compared to capacitance when the value is measured within 30 minutes. Prior to the confexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder Solder Soldering temperature: 245±3°C Immersing time 3±0.5s Immersing depth 1.5~ 2.0mm from the root. Flux Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	mpletion of I value the
4.14 Solo Re to s	vibration	Performance: Capacitance value shall not show drastic change compared to capacitance when the value is measured within 30 minutes. Prior to the confexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder: Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time: 3±0.5s Immersing depth: 1.5~ 2.0mm from the root. Flux: Approx.25% rosin Performance: At least 95% of the dipped portion of the terminal shall	mpletion of I value the
4.14 Solo Re to s	vibration	Performance: Capacitance value shall not show drastic change compared to capacitance when the value is measured within 30 minutes. Prior to the confexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	mpletion of I value the
Re to s	olderability	Performance: Capacitance value shall not show drastic change compared to capacitance when the value is measured within 30 minutes. Prior to the conexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	mpletion of I value the
Re to s	olderability	capacitance when the value is measured within 30 minutes. Prior to the corexam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder: Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time: 3±0.5s Immersing depth: 1.5~ 2.0mm from the root. Flux: Approx.25% rosin Performance: At least 95% of the dipped portion of the terminal shall	mpletion of I value the
Re to s	olderability	exam, Capacitance difference shall be within ±5% compared to the initial exam. The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	I value the
Re to s	olderability	exam. The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	
Re to s	olderability	The capacitor shall be tested under the following conditions: Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	l be covered
Re to s	olderability	Solder : Sn-3Ag-0.5Cu Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	l be covered
Re to s	olderability	Soldering temperature: 245±3°C Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	l be covered
Re to s	olderability	Immersing time : 3±0.5s Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	ll be covered
Re to s	olderability	Immersing depth : 1.5~ 2.0mm from the root. Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	ll be covered
4 15 to s		Flux : Approx .25% rosin Performance: At least 95% of the dipped portion of the terminal shall	ll be covered
4 15 to s		Performance: At least 95% of the dipped portion of the terminal shall	l be covered
4 15 to s			be covered
4 15 to s		T WILL DEW SOIGER	
4 15 to s		A) Solder bath method	
4 15 to s		Lead terminals of a capacitor are placed on the heat isolation board with	thickness of
4 15 to s		1.6±0.5mm. It will dip into the flux of isopropylaehol solution of coloph	
4 15 to s		Then it will be immersed at the surface of the solder with the following co.	ndition:
4 15 to s		Solder : Sn-3Ag-0.5Cu	
4 15 to s		Soldering temperature : 260 ±5°C	
4 15 to s		Immersing time : 10±1s	
4 15 to s		Heat protector: t=1.6mm glass –epoxy board	
4 15 to s		B) Soldering iron method	
4 15 to s		Bit temperature : $400 \pm 10^{\circ}$ C	
417 1	Resistance	Application time : 3+1/-0 s	
	o soldering	Heat protector: t=1.6mm glass –epoxy board	
	heat	For both methods, after the capacitor at thermal stability, the following iter	ms shall be
		measured:	
		Item Performance	
		Capacitance Change Within $\pm 5\%$ of initial capacitance	
		tan δ Less than or equal to the value of item 4.4	
		ESR Less than or equal to the value of item 4.5	
		Leakage current Less than or equal to the value of item 4 voltage treatment)	.3 (after
		Appearance Notable changes shall not be found.	

Version 01	F	Page	9	
------------	---	------	---	--

Week

Code

45

<u>S</u>

47

U

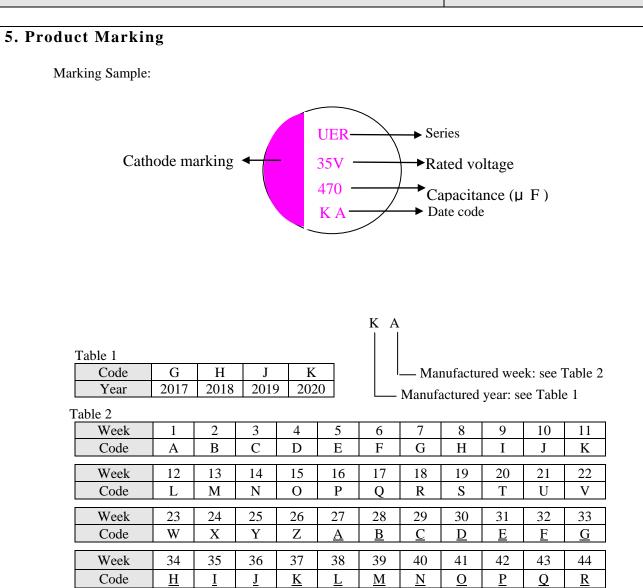
46

<u>T</u>

48

49

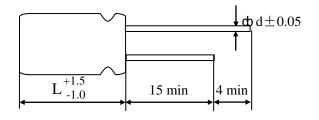
W

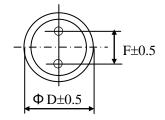

50

51

52

 \underline{Z}





Version	01		Page	10	
---------	----	--	------	----	--

6. Product Dimensions, Impedance & Maximum Permissible Ripple Current Unit: mm

φD	10
L	12.5
F	5.0
φd	0.6

Table 3

Working Voltage (V)	Capacitance (µ F)	Dimension (D×L, mm)	Maximum permissible ripple current at 105°C 100kHz (mA rms)	ESR at 20°C 100kHz (mΩ)	Leakage current (µ A) 2min
35	470	10x12.5	3500	45	3290

Version	01		Page	11
---------	----	--	------	----

7.Application Guideline:

X-CON Solid Aluminum Electrolytic Capacitor should be used compliance with the following guidelines

7-1Circuit design

Prohibited Circuits for use

Do not use the capacitors with the following circuits.

- 1) Time constant circuits
- 2) Coupling circuits
- 3) Circuits which are greatly affected by leakage current
- 4) High impedance voltage retention circuits.

7-2. Voltage

1) Over voltage

The application of over-voltage and reverse voltage below can cause increases in leakage current and short circuits.

Applied voltage, refers to the voltage value including the peak value of the transitional instantaneous voltage and the peak

Value of ripple voltage, not just steady line voltage. Design your circuit so that the peak voltage does not exceed the stipulated voltage.

Over voltage exceeding the rated voltage may not be applied even for an instant as it may cause a short circuit.

- 2) Applied voltage
- ① Sum of the DC voltage value and the ripple voltage peak values must not exceed the rated voltage.
- ② When DC voltage is low, negative ripple voltage peak value must not become a reverse voltage that exceeds 10% of The rated voltage.
- ③ Use the X-CON within 20% of the rated voltage for applications which may cause the reverse voltage during the Transient phenomena when the power is tumid off or the source is switched.

7-3 Sudden charge and discharge restricted

Sudden charge and discharge may result in short circuit's large leakage current. Therefore, a protection circuits are recommended to design in when on of the following condition is expected.

- 1) The rush current exceeds 10A
- 2) The rush current exceeds 10 times of allowable ripple current of X-CON.

A protection resistor (1K Ω) must be inserted to the circuit during the charge and discharge when measuring the leakage Current.

7-4 Ripple current

Use the capacitors within the stipulated permitted ripple current. When excessive ripple current is applied to the capacitor, It causes increases in leakage current and short circuits due to self- heating. Even when using the capacitor under the Permissible ripple current, reverse voltage may occur if the DC bias voltage is low.

7-5 Leakage current

There is a risk of leakage current characteristics increasing even if the following use environments are within the stipulated range However, even if leakage current increases once, it has the characteristic that leakage current becomes small in most cases after voltage is applied due to its self-correction mechanism.

7-6 Failure rate

The main failure mode of X-CON is open mode primarily caused by electrostatic capacity drop at high temperature (i.e.wear out failure), besides random short circuit mode failures primarily caused by over voltage occurs as minor one. The time it takes to reach the failures mode can be extended by using the X-CON with reduced ambient temperature, ripple current and applied voltage.

7-7 Capacitor insulation

- 1) Insulation in the marking sleeve is not guaranteed. Be aware that the space between the case and the negative electrode Terminal is not insulated and has some resistance.
- 2) Be sure to completely separate the case, negative lead terminal, and positive lead terminal and PCB patterns with each other.

Version	01	Page	12

7-8 Precautions for using capacitors

- X-CON capacitors should not be used in the following environments.
- 1) Environments where the capacitor is subject to direct contact with salt water or oil can directly fall on it.
- 2) Environments where capacitors are exposed to direct sunlight.
- 3) High temperature (Avoid locating heat generating components around the X-CON and on the underside of the PCB), or humid environments where condensation can form on the surface of the capacitor.
 - 4) Environments where the capacitor is in contact with chemically active gases.
 - 5) Acid or alkaline environments.
 - 6) Environment subject to high-frequency induction.
 - 7) Environment subject to excessive vibration and shock.

8. Mounting Precautions

Mounting phase	Things to note before mounting	Disposal		
	1) Used X-CON capacitors	Not reused		
Before mounting	2) LC-increased X-CON capacitors	Apply them with rated voltage in series with $1K\Omega$		
	after long storage	resistance for 1 hour at the range between 60 and 70°C		
	3) X-CON capacitors dropped to the	Not reused		
	floor			
	4) Precautions on polar, capacitance	Products without remarkable polar, capacitance and rated		
	and rated voltage	voltage shouldn't be available		
	5) Precautions on the pitch between	The products can be used only when said pitch is matched		
	lead terminal and PCB			
	6) Precautions on the stress that lead	The products can be used for production only when lead		
	terminal and body of X-CON	terminal and body are not subject stress.		
	capacitors enduring in mounting	Deth townsenting and direction in magnetic achould make		
	1) Soldering with a soldering iron	Both temperature and duration in mounting should meet the requirements of out-going SPEC; no stress should be		
		allowed to occur in mounting; Don't let the tip of the		
		soldering iron touch the X-CON itself.		
Mounting	2) Flow soldering	X-CON capacitor body should be prohibited to submerge		
		in melted solder; both temperature and duration in		
		mounting should meet the requirements of out-going		
		SPEC; The rosin is not allowed to adhere to any where		
		other than lead terminal.		
	1) Precautions on mounting status	Do not tilt, bend twists X-CON; Do not allow other		
		matter touch X-CON.		
	2) Washing the PCB (available	Used immersion or ultrasonic waves to clean for a total of		
After mounting	cleaning agent 1)high quality	less than 5 minutes and the temperature be less than 60°C;		
And mounting	alcohol-based cleaning fluid such as st-100s, 750L,750M;2) Detergents	The conductivity, PH, specific gravity and water cleaning, X-CON products should be dried with hot air		
	including substitute freon such as	(less than the maximum operating temperature).		
	AK-225AES and IPA)	(1000 diam die maximum operating temperature).		
	THE 223THES und HTT)			

|--|

9. It refers to the latest document of "Environment-related Substances standard" (WI-HSPM-OA-072).

	Substances			
Heavy metals	Cadmium and cadmium compounds			
	Lead and lead compounds			
	Mercury and mercury compounds			
	Hexavalent chromium compounds			
	Polychlorinated biphenyls (PCB)			
Chloinated	Polychlorinated naphthalenes (PCN)			
organic	Polychlorinated terphenyls (PCT)			
compounds	Short-chain chlorinated paraffins(SCCP)			
	Other chlorinated organic compounds			
Brominated	Polybrominated biphenyls (PBB)			
	Polybrominated diphenylethers(PBDE) (including			
organic compounds	decabromodiphenyl ether[DecaBDE])			
	Other brominated organic compounds			
Tributyltin comp	ounds(TBT)			
Triphenyltin compounds(TPT)				
Asbestos				
Specific azo com	pounds			
Formaldehyde				
Beryllium oxide				
Beryllium copper				
Specific phthalates (DEHP,DBP,BBP,DINP,DIDP,DNOP,DNHP)				
Hydrofluorocarbon (HFC), Perfluorocarbon (PFC)				
Perfluorooctane sulfonates (PFOS)				
Specific Benzotriazole				

Version 01		Page	14
------------	--	------	----